KURARAY POVAL™ for Textile Sizing
The textile manufacture of spun yarn, which has grown based upon cotton, has a long history, and starch was used as a warp size from its beginning. As the use of polyester and polyester cotton yarn has increased, so have the demands on textile size. The need for productivity and quality has justified the higher cost of PVOH compared to starch. As weavers get used to the advantages of PVOH, it has become common to use PVOH on cotton yarns, with or without starch in the size.

KURARAY POVAL™ is manufactured with careful control of degree of polymerization and degree of hydrolysis. KURARAY POVAL™ solution forms a film very easily. Films of PVOH are superior to other resins in tensile strength, tear strength and abrasion resistance.

KURARAY POVAL™ absorbs moisture less than other water-soluble resins, such as acrylic resin, starch, etc. KURARAY POVAL™ requires less humidity in the weave room. Besides, KURARAY POVAL™ has excellent adhesion, especially to synthetic fibre. Overall, KURARAY POVAL™ is consistently in high quality giving excellent efficiency in weaving over wide range of fabrics and looms.

CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADVANTAGES OF KURARAY POVAL™</td>
<td>1</td>
</tr>
<tr>
<td>KURARAY POVAL™ GRADES FOR TEXTILE</td>
<td>1</td>
</tr>
<tr>
<td>• PVOH Production Process</td>
<td></td>
</tr>
<tr>
<td>• Factors Dominating PVOH Properties</td>
<td></td>
</tr>
<tr>
<td>- Degrees of Polymerization</td>
<td></td>
</tr>
<tr>
<td>- Degrees of Hydrolysis</td>
<td></td>
</tr>
<tr>
<td>GRADES of KURARAY POVAL™</td>
<td>2</td>
</tr>
<tr>
<td>GUIDELINES TO USE KURARAY POVAL™</td>
<td>3</td>
</tr>
<tr>
<td>• Abrasion Resistance</td>
<td></td>
</tr>
<tr>
<td>• Residual Strength of Sized Yarn after Abrasion by Stationary Weaving</td>
<td></td>
</tr>
<tr>
<td>GUIDELINES for FABRIC FORMULATION KURARAY POVAL™</td>
<td>4</td>
</tr>
<tr>
<td>KEY POINTS OF Sized Yarn AND SIZE FOR AIR JET LOOM</td>
<td>4</td>
</tr>
<tr>
<td>SLASHING</td>
<td>5</td>
</tr>
<tr>
<td>• Operating Conditions In Slashing will Affect Weaving Performance</td>
<td></td>
</tr>
<tr>
<td>PREPARATION OF KURARAY POVAL™</td>
<td>5</td>
</tr>
</tbody>
</table>

ADVANTAGES OF KURARAY POVAL™

- Good Adhesion; excellent strength and abrasive resistance of the formed coating -> Excellent protective action to the yarns, and minimum warp breakage during weaving -> Higher weaving efficiency and better quality of the fabrics. Decreasing rate of warp breakage is 20% ~ 50%.
- Effective in sizing performance with low size add-on.
- No size drop during sizing or weaving -> Better working environments and less cleaning work.
- Weaving under relatively low humidity -> Better working environments and greater work efficiency.
- The best humidity in weaving room is 70 ~ 75% R.H.
- Uniform properties and effectiveness of a size -> Stable weaving efficiency.

KURARAY POVAL™ GRADES FOR TEXTILE

PVOH Production Process

Vinyl acetate monomer

\[
\text{CH}_2=\text{CH} \quad \xrightarrow{\text{POLYMORIZATION}} \quad \text{CH}_2=\text{CH} \quad \text{CH}_3
\]

Polyvinyl acetate

\[
\text{CH}_2=\text{CH} \quad \text{O} \quad \text{C}=\text{O} \quad \text{CH}_3
\]

\[
\text{CH}_2=\text{CH} \quad \text{OH}
\]

Polyvinyl alcohol (PVOH)

\[
\text{CH}_2=\text{CH} \quad \text{OH}
\]

\[
\text{CH}_2=\text{CH} \quad \text{C}=\text{O}
\]

\[
n=X+Y \quad \text{CH}_2
\]

Factors Dominating PVOH Properties

1. Degree of Polymerization
 - Typical degrees of polymerization (n):
 - 500-600.........Low Viscosity
 - 1700-2400........High Viscosity

2. Degrees of Hydrolysis
 - Showed by mole%: x100
 - 98-99 mole % Fully Hydrolyzed
 - 87-89 mole % Partially Hydrolyzed
GUIDELINES TO USE KURARAY POVAL™

PVOH is commonly used for warp sizing in combination with starch. Through a lot of experiences in the field, it has been proved that the following two basic methods, which draw best performance of PVOH and starch are the most suitable for warp sizing.

“PVOH rich method” and “Starch rich method”

- **PVOH rich method**
 - PVOH : Starch = 7:3

- **Starch rich method**
 - Starch: PVOH = 7~8:3~2

Below described figures graphically illustrate the characteristics of a combination KURARAY POVAL™ and starch according to certain blending ratios.

GRADES OF KURARAY POVAL™

<table>
<thead>
<tr>
<th>Grade</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Viscosity [mPa.s]</td>
</tr>
<tr>
<td>Partially</td>
<td></td>
</tr>
<tr>
<td>Hydrolyzed</td>
<td>5-88 5-88 MB</td>
</tr>
<tr>
<td></td>
<td>22-88 22-88 SB</td>
</tr>
<tr>
<td></td>
<td>22-88 PK</td>
</tr>
<tr>
<td></td>
<td>30-88 30-88 SB</td>
</tr>
<tr>
<td>Medium</td>
<td>27-96 27-96 SB</td>
</tr>
<tr>
<td>Hydrolyzed</td>
<td>17-94 17-94 SB</td>
</tr>
<tr>
<td>Fully Hydrolyzed</td>
<td>5-98 5-98 DB</td>
</tr>
<tr>
<td></td>
<td>28-98 28-98 DB</td>
</tr>
</tbody>
</table>

GUIDELINES TO USE KURARAY POVAL™

KURARAY POVAL™ is commonly used for warp sizing in combination with starch. Through a lot of experiences in the field, it has been proved that the following two basic methods, which draw best performance of PVOH and starch are the most suitable for warp sizing.

“PVOH rich method” and “Starch rich method”

- **PVOH rich method**
 - PVOH : Starch = 7:3

- **Starch rich method**
 - Starch: PVOH = 7~8:3~2

Below described figures graphically illustrate the characteristics of a combination KURARAY POVAL™ and starch according to certain blending ratios.
The primary purpose of sizing is to increasing weaving efficiency via reducing warp stops by the application of a protective coating on the warp yarn. On the other hand, the primary function of sizes is to improve abrasion resistance to warp yarns. The effectiveness of sizes varies with mass of add-ons and types of materials such as PVOH, starch, etc. Abrasion testing of sized yarns provides a means of comparing the effectiveness of sizes and thus their relative costs, for example, X pounds of Size A = Y pounds of Size B. Of course, abrasion resistance is not the only determinant of weaving efficiency.

Operating Conditions in Slashing Will Affect Weaving Performance

Besides the size formulation, consistency and quality of the loom beams make a big difference in the weave room. Some items to check for include:

1. Consistency of size add-on from side to side and loom beam to beam.
2. Yarn sticking to the dryer(s)
3. Yarns out of lease
4. Size distribution - size mainly on the outside of the yarns to improve abrasion resistance and penetration of size into the yarns to help strengthening them.
5. Too much size (shedding, difficult tight weaves).
6. Too little size (abrasion breaks, weak yarn)

The list could be much longer, but the operation of the slasher should be controlled as any modern industrial process.

Key Points of Sized Yarn and Size for Air Jet Loom

<table>
<thead>
<tr>
<th>Sized yarn</th>
<th>Sizing material</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spun yarn</td>
<td>• Good shedding</td>
</tr>
<tr>
<td></td>
<td>• Good shedding</td>
</tr>
<tr>
<td></td>
<td>• Good fluff-binding</td>
</tr>
<tr>
<td></td>
<td>• Smoothness</td>
</tr>
<tr>
<td></td>
<td>• Proper size take-up (15% more than conventional looms)</td>
</tr>
<tr>
<td></td>
<td>• Proper viscosity of size solution</td>
</tr>
<tr>
<td></td>
<td>• Good splitability</td>
</tr>
<tr>
<td></td>
<td>• Smoothness of size film</td>
</tr>
<tr>
<td>Filament</td>
<td>• High abrasion resistance to stand up to high speed motion (reed, heald, dropper etc.)</td>
</tr>
<tr>
<td></td>
<td>• Film properties of size (strength, elongation, pliability, moisture absorbency, smoothness)</td>
</tr>
<tr>
<td>Common with spun & fil.</td>
<td>• Uniform quality</td>
</tr>
<tr>
<td></td>
<td>• The quality of raw yarn</td>
</tr>
<tr>
<td></td>
<td>• Uniform size-take-up</td>
</tr>
<tr>
<td></td>
<td>• The stability of size solution viscosity</td>
</tr>
<tr>
<td></td>
<td>• Good compatibility of sizing materials</td>
</tr>
<tr>
<td></td>
<td>• Good desizability</td>
</tr>
<tr>
<td></td>
<td>• Solubility of size</td>
</tr>
</tbody>
</table>

Preparation of Kuraray POVAL™

1. Start stirring. Stirring must be kept for all the dissolving process.
2. Charge Kuraray POVAL™ gradually.
3. Start heating up. Raise the temperature 2°C per minute as standard.
4. After getting 95°C, continue stirring for 60 minutes, as standard, to get complete solution.

NOTE: Partially hydrolyzed grades of PVOH tend to form lumps at the time of charging into water. In order to avoid this phenomenon and to achieve rapid and easy cooking, take care of the water temperature at charging time, the charging rate of PVOH and the stirring speed.
Adding value to your products - worldwide

KURARAY POVAL™, EXCEVAL™, ELVANOL™ and MOWIFLEX™ are the trademarks for polyvinyl alcohols made by Kuraray. Their key characteristics — outstanding film-forming properties and high binding strength — add real value to your products. Our polymers are water-soluble, highly reactive, crosslinkable and foamable. They have high pigment binding capacity, protective colloid characteristics and thickening effects. The physical and chemical properties of KURARAY POVAL™ make it ideal for a wide variety of applications, ranging from adhesives through paper and ceramics to packaging films. Many of our polymers are food contact-approved and thus suitable for food applications. Ecologically KURARAY POVAL™ is advantageous due to its biodegradability and the fact that combustion does not generate residues. It is available in various particle sizes from granules to fine powders.

Kuraray produces its wide range of KURARAY POVAL™ grades in Japan, Singapore, Germany and the USA. Kuraray’s global production and service network make us your partner of choice for innovative high-quality PVOH resins.

KURARAY - Here to Innovate.

Head Office:

Kuraray Co., Ltd.
Ote Center Bldg.
1-1-13, Otemachi Chiyoda-ku
Tokyo 100-8115, Japan
Phone: +81 3 67 01 1000
infopoval.jp@kuraray.com

Kuraray America, Inc.
2625 Bay Area Blvd.,
Suite 600 Houston, TX77058
United States of America
Phone: +1 800 423 9762
info.kuraray-poval@kuraray.com

Kuraray Europe GmbH
Philipp-Reis-Str. 4
65795 Hattersheim am Main,
Germany
Phone: +49 69 305 85 351
info.eu-poval@kuraray.com

Kuraray Asia Pacific Pte., Ltd.
250 North Bridge Road
#10-01/02 Raffles City Tower
Singapore 179101
Phone: +65 6337 4123
infopoval.sg@kuraray.com

Kuraray China Co., Ltd.
Unit 2207, 2 Grand Gateway
3 Hongqiao Road, Xuhui District,
Shanghai 200030, China
Phone: +86 21 6119 8111
infopoval.cn@kuraray.com

www.KURARAY-POVAL.com